Computer-aided design of porous artifacts

نویسندگان

  • Craig A. Schroeder
  • William C. Regli
  • Ali Shokoufandeh
  • Wei Sun
چکیده

Heterogeneous structures represent an important new frontier for 21st century engineering. Human tissues, composites, ‘smart’ and multimaterial objects are all physically manifest in the world as three-dimensional (3D) objects with varying surface, internal and volumetric properties and geometries. For instance, a tissue engineered structure, such as bone scaffold for guided tissue regeneration, can be described as a heterogeneous structure consisting of 3D extra-cellular matrices (made from biodegradable material) and seeded donor cells and/or growth factors. The design and fabrication of such heterogeneous structures requires new techniques for solid models to represent 3D heterogeneous objects with complex material properties. This paper presents a representation of model density and porosity based on stochastic geometry. While density has been previously studied in the solid modeling literature, porosity is a relatively new problem. Modeling porosity of bio-materials is critical for developing replacement bone tissues. The paper uses this representation to develop an approach to modeling of porous, heterogeneous materials and provides experimental data to validate the approach. The authors believe that their approach introduces ideas from the stochastic geometry literature to a new set of engineering problems. It is hoped that this paper stimulates researchers to find new opportunities that extend these ideas to be more broadly applicable for other computational geometry, graphics and computer-aided design problems. q 2004 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A simple and effective geometric representation for irregular porous structure modeling

Computer-aided design of porous structures is a challenging task because of the high degree of irregularity and intricacy associated with the geometries. Most of the existing design approaches either target designing artifacts with regular-shaped pores or reconstructing geometric models from existing porous objects. For regular porous structures, it is difficult to control the pore shapes and d...

متن کامل

Comparison of Different Linear Filter Design Methods for Handling Ocular Artifacts in Brain Computer Interface System

 Brain-computer interfaces (BCI) record brain signals, analyze and translate them into control commands which are relayed to output devices that carry out desired actions. These systems do not use normal neuromuscular output pathways. Actually, the principal goal of BCI systems is to provide better life style for physically-challenged people which are suffered from cerebral palsy, amyotrophic l...

متن کامل

Computer-aided characterization for effective mechanical properties of porous tissue scaffolds

Performance of various functions of the tissue structure depends on porous scaffold microstructures with specific porosity characteristics that influence the behavior of the incorporated or ingrown cells. Understanding the mechanical properties of porous tissue scaffold is important for its biological and biomechanical tissue engineering application. This paper presents a computer aided charact...

متن کامل

Fixture Design Automation and Optimization Techniques: Review and Future Trends

Fixture design is crucial part of manufacturing process. Fixture design is a critical design activity process, in which automation plays an integral role in linking computer-aided design (CAD) and computer-aided manufacturing (CAD). This paper presents a literature review in computer aided fixture design (CAFD) in terms of automation and optimization techniques over the past decades. First, the...

متن کامل

Computer Aided Design of the Tube Hydroforming and Dual Hydroforming Processes

This paper presents a control model of the hydroforming and the dual hydroforming process of a tube. The theoretical part includes calculations to measure the change in tube thickness through the developed process. The hydroforming and the dual hydroforming processes are simulated in the SOLIDSIMULATION software and the static and the dynamic simulations are modeled. The obtained results for th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer-Aided Design

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2005